Цирконий, циркон, диоксид циркония

Цирконий, циркон, диоксид циркония

История открытия диоксида циркония связана с его минералом. Два века тому назад диоксид циркония был выделен из минерала циркон. С этим минералом связано много древних легенд. Более трех тысяч лет назад, на острове Цейлон, этот минерал использовался в качестве несовершенного алмаза и шел на изготовление женских и мужских украшений. Блестящие камни носили название «матарские алмазы», так как источником их месторождения был один из районов Цейлона - Матара. От истинных алмазов, «матарские» отличались меньшей твердостью и несколько худшей игрой цвета после огранки. Матарский алмаз с целой палитрой красок (от бесцветного и золотисто-желтого до розового и кроваво-красного оттенка) был не что иное, как минерал циркон. Алмазы кроваво-красного цвета назывались в то время гиацинтами (по имени эпического героя Гиацинта, погибшего на спортивных состязаниях, кровь которого бог Аполлон превратил в самоцветы). В древности гиацинты носили на груди первосвященники, считавшие, что красный цвет защищает их от злых духов, болезней и помогает переносить трудности и лишения. Путешественники использовали красный камень в качестве амулета, помогающего утолять жажду и защищающего от ядов. Средневековые врачи прописывали гиацинт как средство от кручины и депрессии, а так же для просветления разума, лечили им нервные болезни, галлюцинации, расстройство сна, и даже пытались гиацинтом «воскрешать из мертвых». В Индии этим камнем старались умилостивить дракона (индийское название минерала - «рахуратка»). В науке существует несколько версий по поводу того, кто дал современное имя «несовершенному алмазу». По одним источникам, нынешним названием полудрагоценный цейлонский алмаз обязан немецкому ученому Брюкнеру, который нарек его в 1778 году арабским словом «заркун», что значит «минерал». По другим, первооткрывателем циркона считается химик Вернер (1783 г.), давший минералу имя «царгун» от двух персидских слов «цар» - золото и «гун» - цвет. Третьи источники утверждают, что циркон -это видоизмененное от простонародного «жаргон» - «обманщик», то есть «ненастоящий алмаз». Официально в научных трудах минерал циркон стал упоминаться в восьмидесятых годах XVIII века. В 1789 г. Немецкий химик, член Берлинской Академии наук Мартин Генрих Клапрот опубликовал результаты анализа драгоценного камня, привезенного с берегов Цейлона. В ходе этого анализа было выделено вещество, которое Клапрот назвал цирконовой землей (terra circonia). Так Мартин Генрих Клапрот стал первым ученым, выделившим из минерала циркон вещество диоксид циркония (ZrO2) [12, 39].

Попытки получить металлический цирконий осуществляли разные ученые: Тромсдорф (восстановление оксида циркония химическим методом), Деви (электролитический метод получения металлического циркония) и т.п. И только в 1824 г., шведский химик Йенс Якоб Берцелиус, путем восстановления фторцирконата калия металлическим натрием, получил серебристо-серый металл.

К2[ZrF6] + 4Na → Zr + 2KF + 2NaF

Полученный в ходе реакции восстановления металл ученый назвал цирконием. Но «цирконий Берцелиуса» оказался очень хрупким, так как содержал значительное количество примесей, не имел металлического блеска и не поддавался механической обработке. Металлу требовалась дополнительная очистка от примесей.

В 1914 г. немецкие исследователи Лили и Гамбургер выделили довольно чистый от примесей цирконий, восстановив натрием в специальном автоклаве-бомбе дважды возогнанный тетрахлорид циркония. Через сто лет после опытов Берцелиуса в 1925 г. был разработан первый промышленный способ получения циркония: метод «наращивания». Суть метода заключалась в следующем: летучее соединение (тетрайодид циркония) подвергалось термическому распаду в вакууме и, в результате, на раскаленной нити вольфрама откладывался чистый металл. Основателями этого метода стали голландские ученые А.Е. Ван-Аркель и Д.Н. де Бур. Благодаря их открытию научный мир получил пластичный металлический цирконий, поддающийся механической обработке - ковке, вальцовке, прокатке. Образцы циркония теперь можно было прокатывать в тонкие листы, проволоку, фольгу и т.п. Но метод «наращивания» был слишком дорогим. Усовершенствовал и удешевил процесс получения циркония немецкий химик В. Кролль. В последствии его имя легло в название данного метода (метод Кроля). Цирконий по данной технологии получался при вдвое меньших затратах, чем по методу наращивания. Схема производства металлического циркония по методу В. Кролля включала в себя две основные стадии: хлорирование двуокиси циркония в четыреххлористый цирконий и последующее восстановление полученного продукта металлическим магнием под слоем расплавленного металла в металлическую губку. Полученная в ходе процесса восстановления циркониевая губка затем переплавлялась в прутки. Метод Кроля получил широкое признание [11].  

Цирконий (Zr) - это химический элемент IV группы периодической системы Менделеева; его атомный номер 40; атомная масса 91,224. Чистый цирконий существует в двух формах: кристаллическая форма - мягкий, ковкий металл серовато-белого цвета; аморфная форма - голубовато - черный порошок. Плотность 6,49 г/см3, t плавления 1852 °С (3362ºF)., t кипения 4377°С (7911ºF). Среднее содержание циркония в земной коре 1,7·10-2% по массе, в гранитах, песчаниках и глинах несколько больше 2·10-2%, чем в основных породах 1,3·10-2%. Максимальные концентрации циркония - в щелочных породах 5·10-2%. Цирконий не встречается в природе в чистом состоянии, а может быть обнаружен в соединении с оксидом силиката – минерал циркон (ZrSiO4) или в виде свободного диоксида циркония - минералбадделеит (ZrO2) [34, 39, 43].

Минерал Циркон (ZrSiO4) является силикатом циркония. Содержит примеси железа, меди, кальция, цинка, титана, гафния, урана и тория. Призматические кристаллы, зерна, агрегаты. Твердость 7,5; плотность 4,0-4,7 г/см3. Встречается в гранитах, сиенитах, щелочных пегматитах. По цвету и прозрачности различают следующие виды циркона:

Гиацинт - прозрачный, красный, красно-оранжевый, красно-коричневый, пурпурный.

Жаргон - прозрачный, медово-желтый, дымчатый, бесцветный.

Старлит - прозрачный, голубой (получается прокаливанием).

По данным проведенных анализов оказалось, что циркон содержит в себе около 68% диоксида циркония (ZrO2) и около 3% гафния (Hf), которые трудно разделить [11, 12, 34, 39, 43].

Средний состав циркона (% по массе):

ZrO2(66-68%), Hf(1-3%), SiO(32-33%), Al2O3(0,2-0,8%), Fe2O3(0,03-0,08%), TiO2(0,08-0,1%), U3O8(0,02-0,03%), P2O5(0,1%),
Оксиды РЗЭ(0,5-0,6%)

Диоксид циркония (ZrO2встречается в природе в виде минерала бадделеита. Бесцветные моноклинные кристаллы (плотность - 5,8 г/см3) или бесцветные тетрагональные кристаллы (плотность - 6,1 г/см3). Чистый диоксид циркония тугоплавок и устойчив при повышенной температуре, tпл=2680оС, tкип=4300оС. Имеет низкую удельную теплопроводность. Диамагнитен, мало растворим в воде, устойчив к действию различных химических реагентов [34, 39].

Минералы циркона и бадделеита не могут использоваться в медицине в первичном состоянии из-за содержащихся в них примесей различных металлов, придающих им непригодный для использования цвет, и примесей радионуклидов, таких как уран и торий, которые делают их радиоактивными. Для получения чистых от примесей порошков диоксида циркония требуются комплексные и длительные процессы очистки. После очищения от примесей данный материал может быть использован в качестве керамического биоматериала [39].

Минерально-сырьевая база. Производство. По оценке USGS (Геологическая служба США), мировые разведанные запасы циркония составляют 38 млн. тонн (в пересчете на ZrO2). Более 95 % запасов циркония за рубежом учитываются в современных и погребенных прибрежно-морских циркон-рутил-ильменитовых россыпях. Обычное содержание циркона в разрабатываемых россыпях - от 7-8 до 15-20 кг/м3. По данным USGS, основной объем запасов приходится на Австралию, ЮАР, США, Индию, Бразилию [9].

Россия по запасам сырья занимает четвертое место в мире. Более 50 % ее балансовых запасов связано со щелочными гранитами, 14 % - с бадделеитовыми камафоритами, 35 % -с погребенными циркон-рутил-ильменитовыми россыпями. Таким образом, минерально-сырьевая база циркония России структурно и качественно отличается от зарубежной. В России полностью отсутствуют современные цирконийсодержащие прибрежно-морские россыпи, тогда как за рубежом с ними связаны почти все запасы циркония. Погребенные россыпи отличаются от современных более сложными горно-геологическими условиями залегания и соответственно характеризуются низкой рентабельностью отработки. На месторождения циркония в щелочных гранитах за рубежом приходится 2 % запасов, и они не рассматриваются в качестве перспективного источника циркония, в то время как в России с этим типом связано более 50 % запасов (Улуг-Танзекское и  Катугинское месторождения). Освоенность минерально-сырьевой базы циркония России крайне низкая - в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита (Мурманская область). Бадделеитовый концентрат в настоящее время производится только в России. В то же время цирконовый концентрат является остродефицитным сырьем и полностью импортируется в Россию [3, 4, 30].

Мировое производство диоксида циркония оценивается специалистами USGS в пределах 40-50 тыс. тонн в год. Диоксид циркония выпускается несколькими компаниями США, Японии, Франции и Италии. Интенсивно расширяются мощности по производству диоксида циркония в Японии, Австралии, ЮАР, Норвегии, Китае и других странах. Крупнейший производитель диоксида циркония - США [3, 9].  

Основные экспортеры цирконового концентрата - Австралия и  ЮАР. В последние годы объемы экспорта концентрата из Австралии сокращались, в то время как ЮАР увеличивала поставки. Главными импортерами цирконового концентрата являются страны Западной Европы (Италия, Испания, Германия, Франция, Нидерланды и Великобритания), а также Китай и Япония.  

Экспорт бадделеитового концентрата из России с 90-х г. постепенно увеличивался главным образом в Норвегию. Начиная с 2002 г. бадделеит также экспортируется в страны Юго-Восточной Азии и Западной Европы [30].

Цирконовый концентрат импортируется в Россию с Украины, очень редко - из Австралии; частично потребность удовлетворялась за счет запасов госрезерва. Объем поставок цирконового концентрата составил в 2000 г. 9,3 тысяч тонн, а в 2001 г. возрос на 11 % - до 14 тысяч тонн [3, 31].

На данный момент цены на высокочистый стабилизированный диоксид циркония, полученный химическим путем составляют:
• диоксид Zr стабилизированный (CaO) - $18,1 за 1 кг.

• диоксид Zr стабилизированный (MgO) - $19,4 за 1 кг.

• диоксид Zr стабилизированный (3% Y2O3) - $18,8 за 1 кг.

• диоксид Zr стабилизированный (8% Y2O3) - $20,1 за 1 кг [9, 37].

По оценкам специалистов потребление диоксида циркония активно растет. Основной объем использования этой продукции приходится на выпуск огнеупоров и керамических пигментов. С 2000 года наблюдается значительный рост потребления диоксида циркония для тонкой керамики при производстве оптоволоконного кабеля и других высокотехнологичных продуктов, используемых в коммуникационных сетях, а также для электронной промышленности. В мировом автомобилестроении ожидается дальнейший рост спроса на диоксид циркония для производства каталитических фильтров-нейтрализаторов выхлопных газов автомобилей вследствие ужесточения экологического законодательства в странах Азии, Южной Америки и Африки, а также ввиду введения во всех регионах более строгих правил в отношении дизельных автомобилей [9].  

Диоксид циркония получают путем удаления оксида кремния из цирконового концентрата с использованием различных процессов термической и химической диссоциации. При этом различают плавленый диоксид циркония (моноклинный и стабилизированный), получаемый термическим процессом (плавка в электрических печах цирконового концентрата). Для получения диоксида циркония помимо цирконового используются также бадделеитовый (98-99 % ZrО2) и калдаситовый (70-80 % ZrO2) концентраты. В настоящее время из бадделеита производится менее 20 % диоксида циркония, тогда как в начале 90-х гг. - более 60 % [3, 4, 9]. Высокочистый диоксид циркония производится химическим способом, при этом выделяют также моноклинный и стабилизированные сорта с полной (FSZ - Fully Stabilized Zirconia) или частичной стабилизацией (PSZ - Partially Stabilized Zirconia).

Диоксид циркония (ZrO2) существует в виде трех кристаллических фаз: моноклинной (М), тетрагональной (Т) и кубической (С). Во время нагревания диоксид циркония подвергается процессу фазового преобразования (Рис. 1). Моноклинная фаза термодинамически устойчива при комнатной температуре и до 1170ºС. Свыше этой температуры происходит переход диоксида циркония в более плотную тетрагональную фазу. Тетрагональная фаза устойчива при температурах от 1170ºС до 2370ºС.   При температурах выше 2370ºС диоксид циркония переходит в кубическую фазу. При нагревании переход из моноклинной (М) в тетрагональную (Т) фазу сопровождается уменьшением объема на 5%. При охлаждении переход из тетрагональной (Т) в моноклинную фазу (М) происходит в диапазоне температур от 100ºС до 1070ºС и сопровождается увеличением объема на 3-4% [6, 7, 8, 10, 13, 14, 19, 25, 39].


Стабилизированный диоксид циркония.

Добавление стабилизирующих оксидов к чистому диоксиду циркония, таких как кальций (CaO), магний (MgO), церий (CeO2) и иттрий (Y2O3), может подавлять фазовые трансформации материала. В зависимости от количества стабилизирующего агента различают диоксид циркония: полностью стабилизированный (FSZ - Fully Stabilized Zirconia), частично стабилизированный (PSZ - Partially Stabilized Zirconia) [2, 19, 23, 24, 25, 39]. 

Полностью стабилизированный диоксид циркония (FSZ) получают при добавлении к нему более 16% моль CaO(7,9% веса), 16% моль MgO (5,86% веса), 8 % моль Y2O(13,75% веса). Он имеет кубическую форму (С). Из-за его повышенной прочности и высокой резистентности к тепловому удару этот материал успешно используется для производства огнеупоров и технической керамики [25].

Частично стабилизированный диоксид циркония (PSZ) получают добавлением меньшего количества стабилизирующих агентов, чем при получении полностью стабилизированного диоксида циркония (FSZ). Наиболее полезные механические свойства могут быть получены, когда диоксид циркония будет находиться в многофазном состоянии. Стабилизаторы позволяют получить многофазный материал при комнатной температуре, в которой кубическая (С) - главная фаза, а моноклинная (М) и тетрагональная (Т) - второстепенные фазы [25, 39, 44] .

Несколько видов частично стабилизированного диоксида циркония (PSZ) было проверено для возможного использования в качестве керамического биоматериала. Керамика на основе диоксида циркония, частично стабилизированного оксидом магния (Mg-PSZ) - одна из наиболее часто используемых видов технических керамик. Керамика Mg-PSZ рассматривалась в качестве материала для использования в медицине [52]. Остаточная пористость в материале, довольно крупный размер частиц (30-40мкм), сложность в получении Mg-PSZ без примесей - все это снизило интерес в использовании этой керамики для биомедицинских целей [33]. Известно, что механизм трансформационного упрочнения менее выражен в керамике на основе диоксида циркония, частично стабилизированного магнием (Mg-PSZ), чем у керамики на основе диоксида циркония, частично стабилизированного иттрием (Y-TZP) [39, 45].  

Керамику на основе диоксида циркония, стабилизированного оксидом церия (CeO2), редко рассматривали в качестве керамического биоматериала, хотя она показывает высокую трещиностойкость (до 20 МПа√м) и долговечность [18, 47, 48].  

Диоксид циркониячастично стабилизированный иттрием (Y-TZP - Yttrium-Tetragonal Zirconia Polycrystal)

В присутствии малого количества стабилизирующих оксидов возможно получить керамику на основе частично стабилизированного диоксида циркония (PSZ) при комнатной температуре только с тетрагональной фазой - тетрагональные поликристаллы диоксида циркония (TZP - Tetragonal Zirconia Polycrystals). Добавление примерно 2-3% моль иттрия (Y2O3) в качестве стабилизирующего агента к диоксиду циркония позволяет получать керамический материал, состоящий из 100% мелких метастабильных тетрагональных частиц - Y-TZP (Yttrium-Tetragonal Zirconia Polycrystal) [19].  

Добавление более 8% моль иттрия (Y2O3) к диоксиду циркония позволяет получать полностью стабилизированный диоксид циркония (FSZ) только с кубической фазой, но с меньшим сопротивлением к разрушению, чем у керамики с частичной стабилизацией (PSZ) [42].

Физические и механические свойства Y-TZP керамики

Керамика на основе диоксида циркония, частично стабилизированного иттрием (Y-TZP), показывает исключительные механические и физические свойства. Показатели прочности на изгиб и трещиностойкости превосходят характеристики всех протестированных до сих пор керамических материалов. Основные характеристики Y-TZP керамики в сравнении с керамикой на основе алюминия (Alumina) отражены в табл. 1

Таблица 1

Основные характеристики Y-TZP керамики

Свойства

Alumina

Y-TZP 

Химический состав

100% Al2O3

ZrO2+3%моль Y2O3

Плотность, г/см³

≥ 3.97

> 6

Пористость, %

< 0.1

< 0.1

Прочность на изгиб, МПа

500

900-1200

Прочность на сжатие, МПа

4100

2000

Модуль Юнга, ГПа

380

210

Трещиностойкость К МПа м-1

4

9-10

Коэффициент теплового расширения, К-1

8 х 10-6

11 х 10-6

Теплопроводность, Wm К-1

30

2

Твердость, HV 0.1

2200

1200

 

Керамика на основе диоксида циркония отличается уникальной способностью повышать свою механическую прочность под воздействием нагрузок. Это происходит за счет механизма трансформационного упрочнения.

Механизм трансформационного упрочнения Y-TZP керамики.

Высокодисперсные частицы тетрагонального диоксида циркония внутри кубической матрицы при условии, что они достаточно маленькие, могут поддерживаться в метастабильном состоянии, которое способно трансформироваться в моноклинную фазу [19]. Сжимающие напряжения жесткой матрицы на тетрагональные частицы диоксида циркония противостоят трансформации их в менее прочную моноклинную фазу. Частицы тетрагонального диоксида циркония могут трансформироваться в моноклинную фазу, когда сжимающие напряжения, которые оказываются на них матрицей, снимаются трещиной в материале [28, 39, 40].

На переднем конце трещины происходит Т→М трансформация с увеличением объема на 3-5%, которая инициирует появление сжимающих напряжений в противоположность растягивающим напряжениям, способствующих распространению трещины. Этот процесс дает начало сильному механизму, подавляющему распространение трещины и упрочняющему керамику - механизму трансформационного упрочнения. Энергия разлома рассеивается в Т→М трансформации, которая подобна мартенситному преобразованию в закаленной стали (Рис. 2). В результате, распространение трещины подавляется и увеличивается прочность керамики [17, 20, 21, 22, 25, 27, 29, 32, 36, 39, 49, 51].



«Старение» Y-TZP керамики

В отличие от металлов, керамические материалы обладают высокой устойчивостью к электрохимической коррозии, однако в некоторых случаях они подвержены химической коррозии (химической растворимости). Химическая коррозия может серьезно влиять на прочность керамического материала. Разрушение керамики связывают с трещинами, размеры которых увеличиваются настолько, что материал перестает сопротивляться воздействию прилагаемых к нему нагрузок. Разрушение керамики происходит в виде внезапного распада материала, такого как мгновенный раскол хрустального фужера или ветрового стекла автомобиля. Химическое взаимодействие между керамикой и окружающей средой (вода, водяной пар) в области верхушки трещины ускоряет рост трещины. Этот процесс происходит в результате воздействия воды или водяного пара на связь Si-O-Si с образованием гидроксидных соединений в области верхушки трещины кремнеземистого стекла, приводя в результате к разрушению керамического материала под воздействием приложенных нагрузок [5].

Стабильность керамики на основе диоксида циркония под длительным воздействием влаги и нагрузки представляет собой особый интерес. Свободная от кремнеземистого стекла керамика на основе диоксида циркония, частично стабилизированного иттрием, не подвержена химической коррозии, но в литературе описано низкотемпературное разрушение (LTD- Low Temperature Degradation) керамики, известное как «старение» материала. Этот процесс происходит в результате прогрессирующей спонтанной трансформации тетрагональной в моноклинную фазу (Т→М), которая приводит к уменьшению механической прочности Y-TZP керамики [15, 16, 17, 39].

Низкотемпературное разрушение («старение») керамики на основе диоксида циркония было детально изучено. Было установлено, что разрушение происходило при контакте с водой или водяным паром во время стерилизации и имело максимальное значение при температуре 250ºС [35, 41, 42].

Процессы «старения» Y-TZP керамики подробно суммировал Swab J. (1991) [46]:

Диапазон наиболее критической температуры для «старения» находится между 200-300ºС;

  1. Эффект «старения» проявляется в виде снижения прочности, плотности, трещиностойкости материала и повышением содержания в материале моноклинной фазы;
  2. Снижение механической прочности материала происходит в результате Т→М трансформации, которая сопровождается образованием микро и макро трещин в материале;
  3. Т→М трансформация начинается на поверхности и прогрессирует в тело материала;
  4. Снижение размера частиц и/или увеличение концентрации стабилизирующего агента замедляет скорость Т→М трансформации;
  5. Т→М трансформация усиливается в воде или паре.

 

Низкотемпературное разрушение («старение») керамики на основе диоксида циркония приводит в результате к разрушению поверхности материала, а именно [18]:

  1. Создание шероховатой поверхности, которое ведет к повышенному износу материала;
  2. Образование трещин, которые уменьшают срок службы материала

 

Скорость низкотемпературного разрушения («старения») Y-TZP керамики зависит от многих факторов, таких как: химический и фазовый состав материала, размер частиц материала, концентрация стабилизирующего агента, длительность воздействия «стареющей» среды и нагрузки на материал, процессы производства и обработки материала.

В работе Акимова Г.Я. и соавторов (2005) был проведен анализ зависимости прочности керамики на основе частично стабилизированного диоксида циркония (Y-TZP) от степени тетрагональности тетрагональной фазы (Т-фазы). В результате исследования было установлено, что прочность керамики на основе частично стабилизированного диоксида циркония при сравнительно высокой плотности (≈98-99% от теоретической) существенным образом зависит от присутствия (отсутствия) в ее структуре модификации Т-фазы с большим значением степени тетрагональности. Чем больше значение степени тетрагональности, тем больше прочность керамики [1].

Было высказано предположение, что количество моноклинной фазы (М-фазы) должно быть меньше 10% для каждой поверхности материала, которая контактирует со «стареющей» средой (вода, пар) [18].

Уменьшение размера частиц и/или увеличение концентрации стабилизирующего агента может уменьшить скорость спонтанной Т→М трансформации в Y-TZP керамике. Размер частиц должен быть менее 0.8 мкм. Концентрация стабилизирующего оксида иттрия (Y2O3) должна быть 3% моль [29, 38, 50].

Процессы производства Y-TZP керамики также влияют на качество и стабильность материала. Использование порошков диоксида циркония высокой степени очистки способствует гидротермальной стабильности Y-TZP керамики. Использование метода горячего изостатического прессования (HIP - Hot Isostatic Pressing) позволяет добиться гидротермальной стабильности и уменьшению скорости спонтанной Т→М трансформации материала, тем самым, увеличивая срок службы материала [26, 39].  

Различные методы обработки Y-TZP керамики, такие как: фрезерование, пескоструйная обработка, полирование, тепловая обработка, оказывают влияние на микроструктуру материала и сопротивление «старению» материала [18].


Поделитесь статьей
#
Другие вопросы этого раздела
Запись на приём

Ваша заявка принята

В ближайшее время с вами свяжется наш менеджер

X
Яндекс.Метрика